
Journal of Statistical Physics, Vol. 66, Nos. 1/2, 1992 

Short-Time Behavior of the Vibrational- 
Energy-Time Correlation Function for a 
One-Dimensional Model of Diatomic Molecules 

Alessandro Monge 1'2 and E. G. D. Cohen 1 

Received June 17, 1991 

The short-time behavior of the vibrational-energy-time correlation function 
(VECF) is studied both theoretically and numerically for a one-dimensional 
model of diatomic molecules with harmonic intramolecular and hard inter- 
molecular interactions. In the equipartition regime, the short-time expansion of 
the VECF is independent of the vibrational frequency and agrees with statistical 
mechanics. 
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1. I N T R O D U C T I O N  

In  this paper  we study the vibrat ional-energy-t ime correlation function 
(VECF)  for a one-dimensional  model  of diatomic molecules with harmonic  
intramolecular  and hard intermolecular interactions, introduced in ref. 1 
and further investigated in ref. 2. The study of this quanti ty was first 
considered by Benettin et  al. (3) for a model  similar to ours, but  with a soft 
repulsive intermolecular  interaction. They used the V E C F  to determine the 
effectiveness of the energy exchange between translational and vibrational 
degrees of freedom. Since the decay of the V E C F  was nonexponential ,  with 
a slow long-time decrease, they considered the half-time of the decay and 
observed an exponential  increase of  it with the frequency of  the internal 
vibration. Later  on the V E C F  was computed  for the model  of diatomic 
molecules with hard interactions by Erpenbeck and Cohen,  (~) where an 
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apparently exponential decay at early times was found, with no indication 
of a slow, post-exponential decay increasing with the frequency. 

The main purpose of this paper is to study the initial decay of the 
VECF for our system of diatomic molecules by using a statistical mechani- 
cal calculation of the VECF short-time behavior and to show that the 
leading term in t is indeed independent of the frequency. This statistical 
mechanical prediction will then be compared with the results of the 
numerical calculations. The VECF is studied numerically for different 
values of the number of molecules n and of the frequency co. For sufficiently 
large values of n and ~o, when the system exhibits equipartition of 
energy, ~'2) we find agreement between the observed initial decay of the 
VECF and the statistical mechanical result. As the border between the 
equipartition and no-equipartition regions in the (n, co) parameter space is 
approached, deviations occur from this statistical mechanical behavior. 

2. VECF FOR A O N E - D I M E N S I O N A L  M O D E L  OF 
D I A T O M I C  M O L E C U L E S  

We consider a one-dimensional model of n identical diatomic 
molecules. Each molecule consists of two atoms of mass m bound together 
by an intramolecular harmonic force. Of the two atoms in a molecule only 
one interacts with an atom in a nearest neighbor molecule, while the other 
atom is transparent for all other atoms, including that in the same 
molecule, with which it interacts harmonically. Denoting the position and 
the momentum of the interacting atom in molecule i by qi and Pi, respec- 
tively, and the position and momentum of the transparent atom by q~ and 
p;, respectively, we consider for each molecule center-of-mass and relative 
coordinates and momenta: 

Qi= �89 + q;) Pi= �89 + p;) 
(1) 

~i = l ( q i -  q;) ~, = l ( p i -  P;) 

and write the Hamiltonian for the system as 
+ , n  n 

H =  - -  Z n~+mQ2 Z { 2 + U '  (2) 
p2 

i~l m =1 m i=1 

where ~ is the intramolecular harmonic frequency, and UI is the inter- 
molecular interaction potential, which we choose to be that of hard points, 
i.e., of the form 

UI= ghp(Qiq -~ i -Qj -~ j ) ;  ghp(r)= if r > 0  (3) 
i<j 
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The n diatomic molecules can move on the infinite line, with a basic cell of 
length L and periodic boundary conditions. Details on the definition of the 
system and on the determination of its evolution can be found in ref. 1. 

On the right-hand side of (2), the first term represents the transla- 
tional (kinetic) energy Et of the center of mass of the molecules, and the 
second and the third terms the kinetic E~  and potential Evp contributions 
to the vibrational energy Ev, respectively. Associated with the Hamiltonian 
H are, apart from the total energy E, characteristic units of length lo = L/n, 
mass rno=m, and time to = (L/n)(E/nm) -~/2, so that a reduced frequency 
can be defined by co = Qt 0. 

The vibrational-energy time correlation function is defined by 

co(t) = (E~(0) E~(0 )  (4) 

where ( . . . )  denotes an ensemble average. It is convenient to consider the 
normalized VECF: 

c ~ ( t ) - ( E ~ )  2 
p~( t )=c~(O)_(E~)  2 (5) 

which is expected to decay from an initial value of unity toward zero at 
long times when statistical mechanics applies. 

For  the system of diatomic molecules with soft intermolecular interac- 
tions considered by Benettin et al., the decay in time of the vibrational- 
energy correlation function appeared to be slower than exponential, as con- 
firmed by subsequent calculations on the same model by Erpenbeck and 
Cohen. (4) The decay time of the VECF was defined as its half-life, which 
was found to increase exponentially with the frequency. This result is in 
agreement with Jeans' conjecture of an exponential dependence of energy- 
sharing time scales on the frequency of the diatomic molecules. (5) 

Even though the dependence on co of the decay of the VECF in the 
soft interaction case is not completely clear yet, (4~ it is obvious that a 
crucial difference arises when a hard potential is considered. For  the soft 
interaction, the duration of a collision defines a time scale. With increasing 
frequency the intramolecular vibrational motion and the translational 
motion become increasingly weakly coupled, making the exchange of 
energy between internal and external degrees of freedom increasingly 
difficult and ineffective. For the hard interaction, on the other hand, the 
collisions are instantaneous and such a time scale vanishes. No matter how 
large co, then, vibrational and translational motions are strongly coupled, 
and an effective exchange of energy between them always occurs. The role 
played by the hard collisions will become clear in the following section, 
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where the calculation of the initial slope of the VECF will be reduced to 
a binary collision calculation and no dependence on the frequency will 
appear. 

3. S H O R T - T I M E  B E H A V I O R  OF T H E  V E C F  

For the statistical mechanical calculation of pv(t), Eq. (5), it is con- 
venient to consider our system of diatomic molecules in equilibrium in the 
"volume" L, at temperature T, as a system of n hard points of mass m 
coupled by a harmonic force to n "ghost" points of mass m. Therefore, we 
rewrite the Hamiltonian (2) as a function of {Pl, P~, qi, q~}, i= 1,..., n: 

" ~P2i +P~2~ mQ2 ~ 1 
H =  ~ (2m 2mJ + T ( q i -  q;)2 + U! (6) 

i = 1  = 

where now UI is a function of qn = {ql,---, qn} only. 
We describe the system of n hard points and n ghost points in equi- 

librium by a canonical ensemble at temperature T=2(E)/3nkB, where 
( E )  = E is the total energy and k B the Boltzmann constant. 

In the following we consider the short-time expansion of p~(t): 

p~(t) = p~(O) + p'(O) t + C(t 2) (7) 

where p~(0)= 1. We derive an expression for the initial slope p'v(0) as a 
canonical ensemble average involving the Liouville operator, which we 
then calculate. 

First, we consider the Liouville operator ~ ,  which generates the time 
evolution of a dynamical function f via: 

f ( r ;  t) = et~/(r; 0) (8) 

For the system of n hard points and n ghost points the Liouville operator 
is given by 

~(' = ~o + Y- (9) 
where 

- - - - + ~ - ( q i - - q ~ )  a 0 
i=l (mOq~ mOq; 

is the free Liouville operator (whose three terms describe the free streaming 
of the hard points, the free streaming of the ghost points, and the time 
evolution due to the internal harmonic interaction, respectively), and 

1 
~-(i,j) (11) Y = ~  

t, J 
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where r j )  is the binary collision operator describing the collision i ~--~j. 
We observe that the free Liouville operator ~o is anti-Hermitian, and that 
J-(i, j )  has the following properties: 

.Y-(i, i) = 0, J ( i ,  j )  = ~-(j, i) (12) 

In one dimension the binary collision operator is given by (6) 

J( i ,  j) = 1  6(q~) tPol O(Pu)[b(i, J) - 1] 
m 

(13) 

where po=p~-p j ,  qu=q~-qi ,  0 is the unit step function, and the 
operator b(i, j), defined by 

b(i , j )pi=pj ,  b(i,j) p j=pi  (14) 

describes the exchange of momenta in a binary collision. Moreover, in one 
dimension J-(i,j)vaO only if j = i +  1, and therefore the 3-- operator 
becomes 

Y = ~ .Y-(i, i +  1) (15) 
i = 1  

Second, for the short-time expansion of p~(t) it is useful to introduce 
the fluctuation g~ of E~ : 

Wv=E~-(E~)  (16) 

Then, by indicating with g~g) the contribution of the ith molecule to ~ ,  we 
have  

e~= ~ e~ ~ (17) 
i = 1  

with ( g  ~i) ) = 0 and ( g  f ) = n ( ~  ~/)) 2 ). The normalized VECF (5) can then 
be rewritten as 

( gvetZe 4 ) 
Or(t) = (g~) (18) 

Expanding around t = 0, we obtain for the initial slope 

p'~(o) = ( ~ )  (19) 
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Using now that ~o is anti-Hermitian, we have, 

(20) 

and using Eq. (11) and the properties of J ( i ,  j) ,  Eq. (12), we obtain 

Then, from Eqs. (19)-(21), the initial slope p'~(0) becomes 

(21) 

where 

2 
p;(0) = ~, / ~ v  )/O~(1)'2~ {As + A a }  (22) 

A a =  (g~2)j(1,  2)~'~ ) 
(23) 

In this way the calculation of p'v(0) is reduced to a two-molecule calcula- 
tion. After a little algebra we obtain 

1 
(PT+Pl ) /  A , -  8m 3 (6(q12) O(pr ) [pr l  3 2 ,2,\  

1 
Aa= ~5m3 (6(q~2)O(pr)IPr[ 3 P ~ )  

(24) 

where Pr P12 Pl  P2, and = = -- P r  = y(Pl  + P2). We observe that (~(q12)) = 
(6(q~2))hp, where ( . . - ) h p  is the canonical ensemble average relative to a 
system of n hard points only. In fact, the average of any microscopic 
function, which depends only on the phases of the hard points, for the 
model including the ghost points is equal to that for the pure hard-point 
model. (6) Moreover, we have 

n 
(6(q12)) = (6(q12))hp = '~  ghp(O) (25) 

where ghp(r) is the pair correlation function for the system of pure points/6~ 
Evaluating the other canonical averages in (24) and using that, in the 
thermodynamic limit, ghp(0)= 1, (7) we find 

3(n /L)  
A s - 4f12(~[lm)1/2 

(n /L)  
A s - 4fl2(~flm) 1/2 

(26) 
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Finally, from (22), using (26) and (g~1)2) = I/fiR, we obtain 

, _ ( 2 " ]  1/2 
p~(0) = \ ~ ]  to 1 (27) 

Thus, the short-time expansion for p~ as a function of the reduced time 
r = t/to is given by 

_ ( 2 " ]  l/2 
p~,(r) = 1 \-j-@ ~ + (9(r 2) (28) 

4. N U M E R I C A L  C A L C U L A T I O N S  A N D  RESULTS 

In the definition (5) of p~(t)  phase averages are considered. In numeri- 
cal statistical mechanics (8~ one invokes the quasi-ergodic hypothesis, which 
implies the equivalence of time averages with the corresponding ensemble 
averages. The natural choice of the equilibrium ensemble for our system is 
the molecular dynamics (MD) ensemble, characterized by given values of 
the parameters n, L, E as well as the total momentum P. By using the 
quasi-ergodic hypothesis, we estimate pv( t )  by the time average fly(t) along 
a single (long) trajectory. It should be remarked that the statistical 
mechanical calculation of the previous section, leading to Eq. (28), was 
carried out using the canonical ensemble and equivalence with the MD 
ensemble is obtained, strictly speaking, in the thermodynamic limit only. 

The numerical calculation of fi~(t) was carried out in the usual way. (8~ 
The vibrational energy Ev( t )  is "observed" at discrete times and on each 
trajectory the correlation function is obtained as a time average over a set 
of "time origins." Statistical uncertainties are determined by using coarse- 
grained time averaging. Standard tests for statistical control (9) are per- 
formed, i.e., the coarse-grained observations are tested to be randomly 
chosen samples from a normal distribution, and when these tests are 
satisfied we compute the standard deviation of the mean from the sample 
variance. We remark that our analysis is based on the assumption of 
ergodic behavior of the trajectory, and the statistical tests are expected to 
fail in the case of periodic or quasiperiodic motion. 

A typical example of quasiperiodic, i.e., nonergodic, motion is shown 
in Fig. 1, where pv( t )  is plotted for a system with n = 3 and co = 0.01. In this 
case there is no equipartition of energy and the statistical analysis failed. 
Phase averages and time averages cannot be interchanged, and p~(t), which 
is a time average along a single trajectory, depends on the initial phase. We 
observe that p~(t)  takes on positive as well as negative values. 

On the other hand, the results of the previous section on the initial 
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slope of p~(t) are expected to be valid only when statistical mechanics 
applies. We have studied the decay of the VECF for a large number of dif- 
ferent realizations with n and co chosen in the equipartition region. 3 We 
always observed an initial exponential decay of p, with a characteristic 
time of ~2to,  essentially independent of co. In Fig. 2 we compare the initial 
exponential decay of p~ with the theoretical value (27) for systems of 
100 molecules at different frequencies. The agreement between theory and 
numerical calculations is seen to be good. The weak oscillatory behavior of 
the observed values of In p~(t) around the theoretical curve is apparently 
related to the time origin spacing used in the calculation and to a resulting 
strong serial correlation for p,(t) at nearby values of the time. (8) In view of 
the large statistical uncertainties, though, this oscillation is not statistically 
significant. 4 

For times greater than a few mean free times to we observed deviations 
from the exponential decay, similar to those of the velocity autocorrelation 
function for a gas of hard spheres/a~ We can therefore write p~(t) in the 
following way: 

p~(O=pv,o(O+p~,~(t) (29) 

3 The equipartition region is roughly n > 20, eJ > 1. More precisely, from earlier calculations (2~ 
we have that for fixed n and small enough ~o there is no equipartition. As o~ becomes larger, 
the system shows equipartition and the value of co for this to occur decreases when n is 
increased. 

4 The statistical uncertainties for fi~(t) were obtained by coarse-graining the data into S = 30 
samples. We estimated the statistical precision for In fly(t) by using ln(fi v _+e)~ln  , o r -  e/fi~. 
We also considered ~ by further coarse-graining into S'  = 3 samples, obtaining essentially 
the same behavior as observed for In r i.e., the mean and the statistical uncertainties are 
similar. 
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Fig. 1. Plot ofp~(t)  f o r n = 3  and co=0.01. 
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Fig. 3. 
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Plo t  of In p~(t) for n = 100 and  co = 1. The dashed  line represents  the theoret ical  

pred ic t ion  (28). 

where pv.o(t) represents the initial exponential decay independent of ~o, and 
pv.l(t) gives nonexponential contributions for larger times, which are 
expected to depend on ~0. Even though this dependence was not 
investigated, it should be remarked that pv.l(t) is essentially 0 for t<~2to, 
and at most of the order of 10 _3 . 

The values of n and co considered in Fig. 2 are well inside the equipar- 
tition region. If we approach the border of the equipartition region by 
keeping n = 100 fixed and by decreasing o~, we observe deviations from the 
statistical mechanical result. As an example, in Fig. 3 we plot In pv(t) ver- 
sus time for n = 100 and co = 1 and we can see that pv shows an initial 
decay rate larger than the one for n = 100 and ~o in the range 100-2000 (cf. 
Fig. 2). These deviations from statistical mechanical behavior increase with 
decreasing ~o. 

5. C O N C L U S I O N S  

We have used statistical mechanics to compute the short-time 
behavior of the vibrational-energy-time correlation function for our model 
of diatomic molecules with hard interactions, and we have compared these 
predictions with the numerical results. 

When equipartition holds, we find that the initial decay of the VECF 
is exponential and independent of ~o. We remark that our theoretical study 
of the short-time behavior of the VECF was based on the use of the 
canonical ensemble and the results apply to the M D  ensemble as well in 
the thermodynamic limit. Nevertheless, our numerical calculations show 
that a good agreement is already achieved for n = 100. Our results show 
that, for n and o~ large enough, there is no anomaly in the exchange of 
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vibrational and translational energy, which should be contrasted to what is 
found for the model of Benettin et  al. ~3) 

When the border between the equipartition and the no-equipartition 
regions is approached, deviations from the predicted statistical mechanical 
behavior are observed. We remark that the initial exponential decay of the 
VECF predicted by statistical mechanics is consistent with the behavior 
with respect to equipartition only "deep" in the (n, ~o) equipartition region. 
The observed deviations for the VECF appear already in the region where 
approximate equipartition is obtained (as shown, for example, in Fig. 3). It 
would be interesting to study these deviations systematically (in particular 
with respect to large n) and to see how the behavior of the VECF could 
be used as a test for statistical mechanical behavior, additional to equipar- 
tition. 
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